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An account is given of the recent development of the theory of effect algebras, 
their connection with partially ordered abelian groups, and their use for the 
mathematical representation of fuzzy or unsharp events. We submit an annotated 
list of important open problems, appropriate research projects, and unresolved 
philosophical issues engendered by the developing theory. 

1. I N T R O D U C T I O N  

At the September 1992 meeting of  the International Quantum Structures 
Association in Castiglioncello, Italy, one o f  us (R.J.G.) presented a paper 
entitled, "The Transition to Orthoalgebras." Al though the notion that orthoal- 
gebras are true quantum logics had few adherents at that time, it has recently 
gained wide support. In the same spirit, we now commend  effect algebras 
(or, what are the same things, D-posets) to the attention o f  quantum logicians. 

As C. H. Randall taught us, it is a serious mistake [and perhaps even a 
"metaphysical  disaster" (Randall and Foulis, 1983)] to regard all propositions 
pertaining to a physical system as forming a single unified logical entity. 
Indeed, propositions about a physical system naturally arrange themselves 
in a hierarchy of  related, but distinct, logical structures. Only the propositions 
at the most  basic level, those that are experimentally testable, two-valued, 
and sharp, but perhaps unstable (i.e., their truth values may change from 
trial to trial o f  an experiment) are represented by elements of  an orthoalgebra 
(Foulis et al., 1992). For instance, in the F r6che t -Ko lmogorov  2 approach to 
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probability theory, the sharp, yes/no, experimental propositions asserting that 
an event occurs are represented by elements of a (r-field of sets. 

Von Neumann (1955, p. 253) observed that, "the relation between the 
properties of a physical system on the one hand, and the projections on the 
other, makes possible a sort of logical calculus with these" (our italics). In 
a slightly later paper Birkhoff and von Neumann (1936) speak about the 
experimental propositions associated with a physical system, with no further 
mention of properties of the system. This abrupt transition from properties 
to experimental propositions (which was never really explained by the 
authors) may be partially responsible for the unfortunate inclination of many 
quantum logicians to identify the lattice ~ of properties of a physical system 
SO with the orthoalgebra L of testable, sharp, two-valued experimental proposi- 
tions about SO. 

In the first place, if P E ~ is a possible property or attribute of a 
physical system S o , it may be far from clear when there is another property 
P' E ~ that ought to be regarded as a logical negation of P. Being black is 
a property of ravens. Is being nonblack (as opposed to, say, being yellow or 
green) a bona fide property of canaries? Perhaps Hempel's (1965) paradox 
warns us against supposing that it is. Although the orthoalgebra L is orthocom- 
plemented, there is no compelling reason to assume that the property lattice 

carries a logically meaningful orthocomplementation. Mielnik (1974, 1976) 
seems to have been among the first to realize that the lattice of properties 
of a quantum mechanical system need not be orthocomplemented. 

Second, although the propositions p ~ L are experimentally testable by 
definition, it may or may not be possible to design an experiment guaranteed 
in advance to ascertain with certainty whether or not a physical system has 
a particular property P ~ ~.  Piron (1981) gives a trenchant analysis of 
this critical distinction between properties on the one hand and two-valued 
experimental propositions (questions) on the other. 

As well as the possible properties (or attributes) P E ~ of the physical 
system SO and the experimental propositions (or questions) p e L concerning 
SO, there are any number of additional kinds of statements or propositions 
that pertain to SO. These range from statistical or scientific hypotheses to 
assertions involving the relation between the mind of the observer and the 
system under observation. Lately, attention has begun to focus on fuzzy or 
unsharp propositions involving SO (Mesiar, 1993) and this is where effect 
algebras come into the picture. 

2. E F F E C T  A L G E B R A S  

The prototype for the mathematical structures known as effect algebras 
is the set ~ ( ~ )  of all self-adjoint operators A on a Hilbert space ~ such that 
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�9 <- A ----- ~. In Ludwig's (1986) approach to the foundations of  quantum 
mechanics, elements of %(~)  are called effects. 

I f  A, B E %(~),  we say that A @ B is defined iff A + B <-- ~, in which 
case we define A �9 B := A + B. (We use := to mean "equals by definition.") 
Thus, the standard effect algebra %(~)  satisfies the conditions in the follow- 
ing definition. 

2.1. Definition. An effect algebra is an algebraic system (E, 0, u, O)  
consisting of a set E, two special elements 0, u E E called the zero and the unit, 
and a partially defined binary operation @ on E that satisfies the following 
conditions for all p, q, r E E: 

(i) [Commutative law] I f p  @ q is defined, then q @ p is defined and 
p O q = q O p .  

(ii) [Associative law] If  q @ r is defined and p @ (q @ r) is defined, 
then p Q q is defined, (p �9 q) @ r is defined, and p @ (q Q r) 
= (p @ q) �9 r. 

(iii) [Orthosupplementation law] For every p ~ E there exists a unique 
q E E such that p �9 q is defined a n d p  @ q = u. 

(iv) [Zero-unit law] If  u @ p is defined, then p = 0. 

Effect algebras are mathematically equivalent to the weak orthoalgebras 
of Giuntini and Greuling (1989) and to the D-posets of K6pka and Chovanec 
(1994). For simplicity, we often refer to E, rather than to (E, 0, u, |  as 
being an effect algebra. 

2.2. Definition. Let E be an effect algebra with unit u and let a, b, c ~ E. 

(i) We say that a and b are orthogonal and write a L b iff a �9 b 
is defined. 

(ii) E is said to be coherent iff a • b, a • c, and b • c implies that 
(a @ b) • c. 

(iii) If  a :~ 0 and a J_ a, then a is called an isotropic element of  E. 
(iv) The unique e l e m e n t c  ~ E s u c h t h a t a  3_ c a n d a  @ c  = u i s  

called the orthosupplement of a and is written as a '  := c. 
(v) We write a -< b iff there exists c E E with a 3_ c and a @ c = b. 

It is shown in Foulis and Bennett (1994) that an effect algebra E is 
partially ordered by the relation <-- in part (v) of Definition 2.2, that 0 -< a 
<-- u for all a ~ E, and that a ~ a '  is an order-reversing involution on E 
with 0 '  = u and u'  = 0. Furthermore, an orthoalgebra is the same thing as 
an effect algebra with no isotropic elements, and an orthomodular poset is 
the same thing as a coherent effect algebra. 

If  E is an effect algebra and a~, a2, a3 . . . .  , an-l,  an is a finite sequence 
of (not necessarily distinct) elements of E, then, by recursion, we say that 
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al �9 a2 �9 a3 �9 . - .  �9 a,-1 �9 an is defined in E iff s :=  al �9 a2 �9 a3 �9 
�9 " �9 an-j  is defined in E and s �9 an is defined in E, in which case al �9 
az �9 a 3 �9 . "  �9 an-I 0 an : =  s O an. If  (ai) is an infinite sequence of  
elements in E, we say that Oj aJ is defined iff s,, : =  al �9 a2 �9 a3 �9 " '" �9 
an is defined for every n -- 1 and {Sn In -- 1 } has a least upper bound s in 
E, in which case, 0 ]  aJ :=  s. 

if  E and F are effect algebras with units u and v, respectively, then a 
mapping do: E ---> F is called a morphism iff d0(u) = v and, for a, b E E with 
a I b, we have do(a) _L do(b) and do(a �9 b) = do(a) �9 do(b). A cr-morphism 
do: E --~ F is a morphism such that, whenever  (aj) is an infinite sequence o f  
elements in E such that Oj aj is defined in E, then ~ j  do(aj) is defined in F 

and do(Qj aj) = 0] do(a]). 
The positive operator-valued (POV) measures used in the stochastic or 

phase-space approach to quantum mechanics (Busch et al., 1991; Schroeck, 
1994; Schroeck and Foulis, 1990) are cr-morphisms do: E ~ ~ ( ~ )  f rom the 
Boolean or-algebra E of  measurable subsets o f  a Borel space to the standard 
effect algebra %(~)  on a Hilbert space ~ .  

3. PARTIALLY O R D E R E D  A B E L I A N  G R O U P S  A N D  INTERVAL 
E F F E C T  A L G E B R A S  

By a partially ordered Abelian group, we mean an additively written 
Abelian group G equipped with a partial order relation -< that is translation 
invariant in the sense that, for a, b, c ~ G, a ~ b ~ a + c - b + c. For 
such a group G, the subset G + :=  {g ~ G I 0  - g}, called the positive cone, 
satisfies G + + G + C G § and G + n - G  + = {0}. Conversely, if G + is a subset 
of  the Abelian group G and G § satisfies the last two conditions, then there 
is one and only one way to organize G into a partially ordered Abelian group 
in such a way that G + is its positive cone, namely, by defining a -< b for a, 
b ~ G iff 3c ~ G + with a + c = b (Goodearl, 1986). 

If  G is a partially ordered Abelian group and 0 v~ u ~ G § the interval 
G+[0, u] : =  { g ~ G I0 -< g -< u} can be organized into an effect algebra 
with unit u by defining a �9 b for a, b ~ G+[0, u] iff a + b ~ u, in which 
case a �9 b "= a + b (Bennett and Foulis, n.d.). An effect algebra of  the 
form E = G+[0, u] is called an interval effect algebra and G is called an 
ambient group for E. In general, the ambient group G is not uniquely deter- 
mined by E. 

3.1. Example. Let Z + denote the standard positive cone in the additive 
group Z of  integers and let Z2 be the additive group of  integers modulo 2. 
Let A "= Z • Z with positive cone A + :=  Z + • Z +, B "= Z • Z2 with 
positive cone B + :=  {(n, a )  10 =P n e Z +} U {(0, 0)}, and C : =  Z with 
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positive cone C + := {3n + 4mln, m ~ Z+}. Then the interval effect algebras 
A+[(0, 0), (1, 1)], B+[(0, 0), (1, 1)], and C+[0, 7] are mutually isomorphic. 

If E is an effect algebra and K is an Abelian group, then a mapping 
qb: E ~ K is called a group-valued measure iff, for a, b E E with a J_ b, 
d~(a �9 b) = +(a) + ~b(b). It is shown in Bennett and Foulis (n.d.) that, if E 
is an interval effect algebra, there is a partially ordered Abelian group G and 
an element 0 v~ u E G + such that E = G+[0, u], G = G + - G +, every element 
in G + is a sum of a finite sequence of elements in E, and every K-valued 
measure r E ~ K can be extended uniquely to a group homomorphism 
+*: G ~ K. The group G, which is uniquely determined by E up to an 
isomorphism, is called the universal group of G. 

3.2. Example. If ~ is a Hilbert space, then the additive Abelian group 
0 of all self-adjoint operators on ~ with positive cone O + consisting of the 
positive-semidefinite operators in O is the universal group for the standard 
effect algebra %(7Q = 0+[0, 1]. 

3.3. Example. The additive group R of real numbers with the standard 
positive cone R + is the universal group for the interval effect algebra 
R§ 1], called the standard scale. 

A probability measure (or state) on an effect algebra E is the same thing 
as a morphism qb: E --~ R+[0, 1] of E into the standard scale. Every interval 
effect algebra admits at least one probability measure, and an effect algebra 
with an order-determining set of probability measures is an interval effect 
algebra (Bennett and Foulis, n.d.). Thus, most of the orthostructures that have 
been seriously proposed as models for quantum logics are, in fact, interval 
effect algebras. 

The basic theory of partially ordered Abelian groups was developed 
between 1930 and 1950 by Clifford, Birkhoff, Everett, Freudenthal, Fuchs, 
Kantorovitch, Levi, Riesz, Stone, Ulam, et al. Over the past two decades the 
subject has enjoyed a vigorous renaissance owing to the work of Effros, 
Elliott, Ellis, Goodearl, Handelman, Murphy, Shen, et al. Much of the renewed 
interest in partially ordered Abelian groups derives from their connections 
with operator algebras. For instance, if A is the additive group of a unital 
C*-algebra with the positive cone A + := {aa* la ~ A}, then A+[0, 1] is an 
interval effect algebra generalizing the standard effect algebra %(~). 

Also, if R is a ring with unit and G = Ko(R) is the Grothendieck group, 
the subset G + C_ G consisting of all stable isomorphism classes in the category 
of finitely generated projective right R-modules is often a cone in G, and the 
stable isomorphism class [R] is a natural order-unit in the resulting partially 
ordered Abelian group (Goodearl et al., 1980). An indication of how Ko(R) 
is exploited to investigate the structure of R is found in an expository paper 
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of Murphy (1992). For a more detailed account, consult the monograph of 
Goodearl (1986). 

4. R E S E A R C H  PROJECTS AND OPEN PROBLEMS 

The theory of effect algebras has been under development for only a 
short time and there is some uncertainty about the ends toward which future 
research efforts should be directed. This uncertainty is compounded by the 
richness and fecundity of the part of the mathematical theory already formu- 
lated and its many connections with various branches of mathematics and 
physics. Thus, in the best scientific tradition, it may be useful to provide a 
compilation of appropriate research projects, important open problems, and 
philosophical issues that need to be resolved. In this and the next section, 
we submit a short annotated list of projects and problems that we feel deserve 
some attention. 

We begin with what, from the standpoint of quantum logic, has to be 
regarded as the premier project. 

4.1. Project. Provide a basis for deciding precisely when and exactly 
how an experimental, observational, or operational situation, either real or 
idealized and either practical or contrived, gives rise to events, questions, 
propositions, or observables that can be regarded as fuzzy or unsharp and 
that are represented by elements of an effect algebra. 

The classical notion of a sample space (Feller, 1950) and its generaliza- 
tion to a test space (Foulis et al., 1993) or manual of experiments (Randall 
and Foulis, 1973) provide just such a basis for identifying sharp yes/no 
propositions affiliated with an experimental context and generate a representa- 
tion for these propositions as elements of an orthoalgebra. The D-test spaces 
of Dvure~enskij and Pulmannov~i (1994) are mathematical structures related 
to effect algebras as test spaces are related to orthoalgebras; however, the 
problem of identifying elements of an appropriate D-test space with unsharp 
events in an experimental context has yet to be dealt with. For instance, it 
ought to be possible to associate an appropriate D-test space and a correspond- 
ing effect algebra with the quantum probability models of Aerts (1994). 

The concepts of unsharpness or fuzziness that have hitherto influenced 
the study of effect algebras have arisen, on the one hand, in stochastic (or 
phase-space) quantum mechanics (Schroeck, 1994) and, on the other hand, 
in fuzzy set theory (Zadeh, 1965). Ideally, this project should accommodate 
(and perhaps unify) both these sources of motivation. 

Much has been written about fuzzy sets as generalized "characteristic func- 
tions" taking on values in the unit interval R+[0, 1] rather than in {0, 1 }, and it 
is a simple matter to form effect algebras with such functions as their elements. 
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However, it is not so clear, either in principle or in practice, how to represent 
the obviously fuzzy events affiliated with specific experimental situations 
(e.g., a nearsighted person reporting the outcomes of dice rolls at a craps 
table) as elements of an effect algebra. 

H. Lamb, in a 1904 British Association presidential address, commented 
on experimental fuzziness as follows (Lamb, 1904): "The more refined the 
methods employed the more vague and elusive does the supposed magnitude 
become; the judgment flickers and wavers, until at last in a sort of despair 
some result is put down, not in the belief that it is exact, but with the feeling 
that it is the best we can make of the matter." Modem digital readouts only 
sweep Lamb's concerns under a carpet of electronic instrumentation. Ideally, 
the proposed project should clarify the relations among all sources of experi- 
mental uncertainty, unsharpness, and fuzziness, including Heisenberg uncer- 
tainty, unsharpness in stochastic quantum mechanics, and the observational 
vagaries to which Lamb alludes. 

In connection with this project, it may be useful to note that, by forming 
a tensor product E : = S | A of a scale algebra S and an orthoalgebra A, one 
obtains an effect algebra E that is generally not an orthoalgebra (Foulis et 
al., 1994). This is one of the ways (and perhaps, from the quantum logic 
point of view, the only reasonable way) to impose "fuzziness" on the otherwise 
"sharp" propositions in A. 

4.2. Project. Form a suitable combination of the axioms for a BZ-poset 
(Cattaneo and Nistico, 1989) and the axioms for an effect algebra to produce 
an appropriate notion of a BZ-effect algebra. 

In conducting this project, the standard effect algebra %(~) for a Hilbert 
space could serve as a paradigm. More generally, the unit interval ,~/+[0, 1] 
in a unital von Neumann algebra ~/ should form a BZ-effect algebra in a 
natural way and the salient features of ~/+[0, 1 ] should be reflected in general 
theorems for BZ-effect algebras. The notion of an effect ring, introduced in 
Greechie et al. (n.d.), could provide a starting point for this project. Also, it 
might be desirable to introduce additional axioms suggested by the convexity 
structure of ,~+[0, 1]. 

4.3. Project. Create an appropriate definition and a corresponding theory 
of the "sharp" effects in a general effect algebra. 

If ~ is the Hilbert space for a quantum mechanical system b ~ the 
(possibly) unsharp experimental propositions concerning 5e are represented 
by effect operators on ~ ,  whereas the sharp propositions correspond to 
projection operators on 7~. The projection operators form a sub-effect algebra 
P (~ )  of the standard effect algebra %(7f), and there are various ways of 
characterizing elements of P(7~) among the elements of %(~). For instance, 
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if A ~ %(~), then A ~ P(~)  iff A A A' : O (Dvure~enskij, n.d.; Gudder, 
n.d.; Greechie et al., n.d.). Given a general effect algebra E, how can we 
single out a sub-effect algebra P consisting of the "sharp" elements of E? 
Presumably, P should be an orthoalgebra containing the center of E (Greechie 
et al., n.d.) and every element a e P should satisfy (at least) the condition 
a A a '  = 0 .  

In this regard, the following is of interest: In the theory of partially 
ordered Abelian groups G with order unit u, an element a E G+[0, u] is said 
to be characteristic iff a A (U -- a) = 0 in G+[0, u]. If G is lattice ordered, 
or even an interpolation group, then the characteristic elements form a Boolean 
sub-effect algebra of the interval effect algebra G+[0, u] (Goodearl, 1986; 
Goodearl et al., 1980). 

4.4. Project. Study and classify ideals in effect algebras and investigate 
quotients of effect algebras modulo suitable ideals. 

The quotient of an orthomodular lattice modulo a p-ideal (Kalmbach, 
1983) serves as a prototype for the general definition. For interval effect 
algebras, the resulting theory ought to relate to the existing theory of ideals 
and quotients in partially ordered Abelian groups (Goodearl, 1986, pp. 8-1 l). 

The motivating idea is as follows: If E is the effect algebra of (possibly) 
unsharp propositions affiliated with a physical system SO, and if it is known 
that S o is in a certain physical state +, the propositions e ~ E that are 
impossible in state tb should form an ideal I in E. The remaining propositions 
in E\I, those that are still possible in state ~, should generate the quotient 
effect algebra E/I in an appropriate way. 

For instance, suppose SO is a pair of dice at a craps table and E is the 
Boolean algebra formed by the 2 II (sharp) events for the sample space {2, 
3, 4, 5, 6, 7, 8, 9, 10, 11, 12} of outcomes for a roll of the dice. If the dice 
are loaded so that only the outcomes 7 and I 1 can obtain, then the events 
contained in the set {2, 3, 4, 5, 6, 8, 9, 10, 12} form the ideal 1 of impossible 
elements of E, and the quotient E/I is canonically isomorphic to the Boolean 
algebra formed by the 22 events for the sample space {7, 11 }. 

4.5. Project. Study how properties of an interval effect algebra E relate 
to properties of its ambient groups, and, in particular, to its universal group G. 

For instance, what properties of E correspond to the condition that 
G be lattice ordered, Archimedean, unperforated, torsion free, or has the 
interpolation property? For example, if G is lattice ordered, it is clear that E 
is lattice ordered as well; however, the universal group of the orthomodular 
lattice Gl2 (Beltrametti and Cassinelli, 1981, p. 101) is not even an interpola- 
tion group. 
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The class of x-algebras, introduced in Foulis et al. (1994), deserves 
further study as part of this project. A x-algebra is an interval effect algebra 
whose universal group is G = Z r for some finite positive integer r, where 
G + is a subcone of the standard positive cone (Z+) ~, and the order-unit is u 
�9 = (t ,  t, 1 . . . . .  1). For instance, Gm is a x-algebra. The class of x-algebras 
is closed under Cartesian products, horizontal sums, and tensor products. 

Another important part of this project derives from the case in which 
R is a unital ring, G is the algebraic K-group Ko(R), and the stable isomorphism 
class [R] is taken as the order-unit for the interval effect algebra E (Goodearl 
et al., 1980; Murphy, 1992). Here we have a host of challenging problems; 
for instance, what properties of E correspond to the condition that R be 
commutative, Noetherian, unit regular, an AFC*-algebra, or an AW*-algebra? 

4.6. Project. Establish connections with the base-norm order-unit 
approach to the foundations of quantum mechanics. 

Many of the connections between base-norm and their dual order-unit 
spaces and partially ordered Abelian groups with order-unit are already known 
(Goodearl, 1986), so this project is closely related to Project 4.5. As a starting 
point, we have the following result (Foulis and Bennett, 1994): Let E be an 
interval effect algebra with universal group G and let V(E) be the real vector 
space of all R-valued measures (i.e., charges) on E. Then, if V(E) is finite 
dimensional, so is the real vector space R | G, and R | G is canonically 
isomorphic to the dual space of V(E). 

4.7. Project. Clarify the relationship between effect algebras and ortho- 
supplemented posets. 

By an orthosupplemented poset, we mean a bounded poset E equipped 
with an order-reversing involution e ~ e'. In the terminology of Gudder, an 
orthosupplemented poset is a semiorthoposet in which every element is closed 
(Gudder, 1994). Which orthosupplemented posets can be organized into effect 
algebras? When can a poset with involution be organized into an effect 
algebra in more than one way? Characterize those effect algebras E that, as 
a poset, have various properties of interest, e.g., (E, --) is a distributive 
lattice, a modular lattice, a Heyting lattice, or a semimodular lattice. A starting 
point is the theorem of Pulmannovfi, Greechie, and Foulis characterizing the 
finite effect algebras that form a distributive lattice (Greechie et al., n.d.). 

5. LIFTING PROBLEMS FOR M O R P H I S M S  OR M E A S U R E S  

By a lifting problem is meant a problem as illustrated in Fig. 1. Here 
A, B, C are mathematical structures, + and ~ are mappings, and the problem 
is to find a mapping +* that makes the diagram commutative in the sense 
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C 

A ) 
Fig. 1. 

B 

that ~b = ~b* o ~. If  ~b* can be found, it is said to be obtained by lifting ~b 
through t to C. If  A ___ C and t(a) = a for all a E A, we say that +* is an 
extension of +. (If ~ is an injection, we may wish to regard qb* as an extension 
of ~b in disguise.) 

Here we are suggesting the very general project of  systematically study- 
ing lifting and extension problems that involve effect algebras. To begin with, 
it seems desirable to consider some of the known lifting and extension 
theorems involving special types of effect algebras. These theorems need to 
be classified, related, and possibly extended to more general effect algebras. 
In what follows, we attempt to launch this project by submitting a list of  
some of the more important lifting and extension theorems. 

There are two variations of the basic lifting problem. We begin with 
thefirst variation in which A, B, C, qb, and L are given, and the only problem 
is to find +*, if it exists. 

5.1. Example (Extension of Measures). Let C be a field of  subsets of  a 
set X, let A be a subfield of  C, let ~: A ~ C be the inclusion mapping, suppose 
that B is an Abelian group, and let ~b: A ~ B be a B-valued measure on A. 
The problem of finding +*: C ~ B is the problem of extending the measure 
~b on A to a measure +* on C. 

Carlson and Prikry (1982) have shown that the problem in Example 5.1 
has a positive solution when C is the power set of X and A is any field of  
subsets of  X. Related results can be found in Bhaskara Rao and Shoat  (1992). 

5.2. Example (Integration). Let A be a field of subsets of a set X, let B 
= R, let cb: A ~ B be a measure on A, let C be a subalgebra of the algebra 
of  all measurable functions on X, suppose that C contains all simple functions 
on X, and let •(E) = • the characteristic set function of E, for all E ~ A. 
Then the problem of finding +* is precisely the problem of finding the 
integral + * ( f )  = fxf(x) d+(x), when it exists. 



Transition to Effect Algebras 1379 

Of course, there are many special cases (e.g., A is a G-field, 00 is (r- 
additive, etc.) and alternative versions (e.g., B = R U {o c}, qb is an extended 
real-valued function, etc.) of Example 5.2. 

5.3. Example (Trace). Let C be an irreducible von Neumann algebra of 
finite type, let A be the complete orthomodular lattice of  projections in C, 
let L: A --~ C be the inclusion mapping, let B = R, and let qb: A --~ R+[0,,1] 
C_ B be the normalized dimension function on A. Then qb*: C --* R is the 
trace function on C. 

Again, there are many generalizations and related versions of Example 
5.3. For instance, if C is reducible, B can be replaced by the algebra of all 
continuous real-valued functions on the Stone space of the center of A. A 
closely related result is the following (Bunce and Wright, 1992; Dvure~en- 
skij, 1993). 

5.4. Example (Mackey, Gleason, Bunce, Wright Theorem). Let C be a 
von Neumann algebra with no type I2 direct summand, let A be the complete 
orthomodular lattice of projections in C, let t: A ~ C be the inclusion 
mapping, let B be a Banach space, and suppose that qb: A ~ B is a bounded 
vector-valued measure on A. Then there is a bounded linear operator +*: C 
--~ B such that qb = qb* o ~. 

For the second variation of lifting/extension questions, only A, B, and 
(b are given, and the problem is to find C, L, and qb*. In the second variation, 
it is usually understood that C is to be more amenable to mathematical 
analysis than A. Here are some examples. 

5.5. Example (Carathdoradory Extension). This is a variation of Example 
5.1 in which B = R U {oc}, +: A --~ B is cr-subadditive, and C is not 
given a priori, but has to be constructed as a ~r-field on which qb* is a (r- 
additive measure. 

An account of the Carath6oradory extension theorem can be found in 
Hewett and Stromberg (1965, pp. 126-127). 

5.6. Example (The Universal Group). If A is an effect algebra, there is 
a group C and a C-valued measure ~: A ~ C such that ~(A) generates C and, 
for every group B and every B-valued measure +: A ~ B, there is a group 
homomorphism qb*: C ~ B such that 4, = qb* o t. 

The construction of the universal group can be found in Bennett and 
Foulis (n.d.) and Foulis and Bennett (1994). 

5.7. Example (Naimark Extension). Let A be a (r-field of subsets of X, 
let B be the standard effect algebra %(3~) on the Hilbert space ~ ,  and let 
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+: A ~ B be a a-complete effect-algebra morphism (i.e., a POV measure). 
By the Naimark extension theorem, it is possible to find a Hilbert space 7f 
which is an extension of 7s and a projection-valued measure ~: A --~ C := 
POf) such that qb = qb* o t, where ~: C ~ B is the natural restriction mapping. 

A proof of the Naimark Extension Theorem can be found in Naimark 
(1943) and Riesz and Sz.-Nagy (1960). 

5.8. Example (Wigner-Wright Theorem). Let 7s and 7~ be separable 
Hilbert spaces over •, let A := P(7s and B := P O 0  be the complete 
orthomodular lattices of projection operators on 7s and 7f, respectively, and 
suppose that qb: A ~ B is a ~r-complete effect-algebra morphism. Then there 
is a Hilbert space ) and a unitary isomorphism U: 7f @ o~ ~ ~s such that 
qb = qb* o ~, where L: A --> C:  = P(7s | J~) is given by ~(P) := P | l~ for 
all P ~ P(7s and qb*(Q) := UQU -l for all Q ~ p(7s | o~). 

An account of the Wigner-Wright theorem, its generalization to complex 
Hilbert spaces, and its connection with Wigner's theorem on symmetry trans- 
formations can be found in Wright (1977). Although the Wigner-Wright 
theorem has received little attention from quantum logicians, it would seem 
to have important consequences. Essentially, it says that, if a first quantum 
mechanical system 9~i with Hilbert space 7s can be "explained" by a second 
quantum mechanical system 5r with Hilbert space 7s (in the same sense that 
a thermodynamic system can be explained via statistical mechanics by a 
mechanical system), then 9~ is just 9~1 coupled with a third quantum mechani- 
cal system 5? 3 with Hilbert space ) .  In other words, with orthodox quantum 
mechanical systems based strictly on Hilbert spaces, we have reached an 
explanative impasse! 
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